CRISPR/Cas9 : จากการต่อสู้ของสิ่งมีชีวิตเซลล์เดียว..สู่การรักษาโรคในมนุษย์

คริสเปอร์ (CRISPR) เป็นวงศ์ของลำดับดีเอ็นเอในแบคทีเรีย ซึ่งในลำดับมีส่วนของดีเอ็นเอ (DNA snippets) จากไวรัสที่เคยโจมตีแบคทีเรียนั้น แบคทีเรียใช้ส่วนเหล่านี้ในการตรวจหาและทำลายดีเอ็นเอจากไวรัสที่คล้ายกันในการโจมตีครั้งถัดไป ลำดับเหล่านี้ทำหน้าที่สำคัญในระบบภูมิคุ้มกันของแบคทีเรีย และเป็นพื้นฐานของเทคโนโลยีที่เรียกว่า คริสเปอร์/แคสไนน์ (CRISPR/Cas9) ที่สามารถใช้เปลี่ยนยีนภายในสิ่งมีชีวิต

ระบบคริสเปอร์/แคสเป็นระบบภูมิคุ้มกันโพรแคริโอตที่ช่วยในการต่อต้านส่วนประกอบทางพันธุกรรมแปลกปลอม เช่นเดียวกับที่อยู่ในพลาสมิด (plasmid) และ เฟจ (phages) ซึ่งเป็นภูมิคุ้มกันที่เกิดขึ้นภายหลัง (acquired immunity) อาร์เอ็นที่มีลำดับสเปสเซอร์ (spacer sequence) ช่วยโปรตีนแคส (CRISPR-associated, Cas) ในการจำแนกและตัดดีเอ็นเอจากภายนอก ขณะที่โปรตีนแคสอื่นที่นำโดยอาร์เอ็นเอตัดอาร์เอ็นเอจากภายนอก คริสเปอร์ถูกพบในประมาณ 40% ของจีโนมแบคทีเรียและใน 90% ของอาร์เคียที่ถูกหาลำดับดีเอ็นเอแล้ว

CRISPR ย่อมาจาก Clustered Regularly Interspaced Short Palindromic Repeats ชื่อถูกตั้งก่อนจะรู้ที่มาและหน้าที่ของลำดับย่อยอินเตอร์สเปส (interspacing subsequence)
ณ ตอนนั้น คริสเปอร์ถูกมองว่าเป็นส่วนหนึ่งของดีเอ็นเอโพรแคริโอตที่มีลำดับเบสสั้น ๆ ที่เรียงตัวซ้ำ ๆ ลำดับซ้ำพาลินโดรม (palindromic repeat) เป็นลำดับนิวคลีโอไทด์ที่เหมือนกันเมื่ออ่านจากทั้งสองด้าน การซ้ำแต่ละครั้งตามด้วยดีเอ็นเอสเปสเซอร์จากการพบกับดีเอ็นเอภายนอกครั้งก่อน (เช่น ไวรัส หรือ พลาสมิด) ต่อจากลำดับคริสเปอร์ก็มีกลุ่มเล็ก ๆ ของยีนแคส (CRISPR-associated system, cas)

ระบบคริสเปอร์/แคสแบบง่ายที่เรียกว่าคริสเปอร์/แคสไนน์ถูกปรับแต่งเพื่อแก้ไขจีโนม จีโนมสามารถถูกตัดในตำแหน่งที่ต้องการ โดยการส่งแคสไนน์นิวคลีเอส (Cas9 nuclease) ประกอบกับไกด์อาร์เอ็นเอ (guide RNA, gRNA) เข้าไปในเซลล์ ทำให้สามารถกำจัดยีนที่มีอยู่หรือเพิ่มยีนใหม่เข้าไปได้ กลุ่มรวม Cas9-gRNA ทำหน้าที่เหมือน กลุ่มรวม CAS III crRNA บนแผนภาพด้านข้าง

เทคนิคการแก้ไขจีโนมคริสเปอร์/แคสมีศักยภาพในการนำไปประยุกต์ใช้ในหลายด้าน รวมถึงทางการแพทย์ และทางการปรุงแต่งเมล็ดพืชทางเกษตร การใช้กลุ่มรวม CRISPR/Cas9-gRNA เพื่อแก้ไขจีโจม ถูกเลือกโดยสมาคมเพื่อความก้าวหน้าทางวิทยาศาสตร์อเมริกัน (AAA) ให้เป็นการค้นพบครั้งใหญ่ใน พ.ศ. 2558 ข้อกังวลด้านชีวจริยธรรมถูกกล่าวถึงเกี่ยวกับความเป็นไปได้ในการใช้เทคนิคนี้เพื่อแก้ไขเซลล์สืบพันธุ์

                                    


                                                            
คริสเปอร์/แคสไนน์ (CRISPR/Cas9)


ประวัติ

การค้นพบของกลุ่มดีเอ็นเอลำดำซ้ำเกิดขึ้นโดยอสิระในสามส่วนของโลก หนึ่งในการค้นพบครั้งแรกเกิดขึ้นเมื่อ พ.ศ. 2530 ณ มหาวิทยาลัยโอซะกะในประเทศญี่ปุ่น นักวิจัย โยชิซุมิ อิชิโนะ (Yoshizumi Ishino) และคณะเผนแพร่ผลการทดลองเกี่ยวกับลำดับของยีนชื่อว่า "iap" และความเกี่ยวข้องกับ E. coli ความก้าวหน้าทางเทคโนโยยีในช่วงคริสต์ทศวรรษ 1990 ทำให้พวกเขาสามารถดำเนินงานวิจัยต่อและเพิ่มความเร็วของการหาลำดับด้วยเทคนิคที่เรียกว่าเมตาจีโนมิกส์ (metagenomics) พวกเขาสามารถเก็บตัวอย่างน้ำทะเลหรือดินและหาลำดับดีเอ็นเอในตัวอย่างนั้น

กลไก


ภูมิคุ้มกันคริสเปอร์-แคสเป็นกระบวนการทางธรรมชาติของแบคทีเรียและอาร์เคีย คริสเปอร์-แคสป้องกันการติดเชื้อเฟจ, คอนจูเกชัน (conjugation) และการแปลงพันธุ์ทางธรรมชาติ โดยการทำลายกรดนิวคลีอิกจากภายนอกที่เข้ามาในเซลล์

การได้มาซึ่งสเปสเซอร์


เมื่อจุลินทรีย์ถูกบุกรุกโดยไวรัส ขั้นแรกของการตอบสนองของภูมิคุ้มกันคือการจับดีเอ็นเอของไวรัสและใส่เข้าไปในโลคัสคริสเปอร์ในรูปแบบของสเปสเซอร์ การที่ Cas1 และ Cas2 อยู่ในระบบภูมิคุ้มกันคริสเปอร์-แคสทั้งสองแบบ ชี้ว่าพวกมันมีส่วนในการได้มาซึ่งสเปสเซอร์ งานวิจัยการกลายพันธุ์ยืนยันสมมติฐานนี้ และแสดงว่าการนำยีน cas1 หรือ cas2 ออกทำให้ไม่สามารถจัดหาสเปสเซอร์ได้ ในขณะที่ไม่ส่งผลกระทบต่อการตอบสนองของภูมคุ้มกันคริสเปอร์

โปรตีน Cas1 หลายโปรตีนถูกศึกษาลักษณะเฉพาะและโครงหาโครงสร้าง โปรตีน Cas1 มีลำดับกรดอะมิโนหลากหลาย อย่างไรก็ตาม โครงสร้างผลึกมีลักษณะคล้ายกัน และโปรตีน Cas1 ที่ถูกทำให้บริสุทธิ์ทั้งหมดเป็นนิวคลีเอส/อินทีเกรสที่ต้องพึ่งธาติโลหะ และจับกับดีเอ็นเอโดยไม่พึ่งกับลำดับ[28] โปรตีน Cas2 ที่ถูกเลือกได้รับการศึกษาลักษณะเฉพาะ และพบว่าพวกมันแสดงกิจกรรมเอนโดริโบนิวคลีเอสเพาะต่อ ssRNA (สายเดี่ยว) หรือ dsDNA (สายคู่)

ในระบบไอ-อี ของ E. coli Cas1 และ Cas 2 จับกันเป็นกลุ่มรวมโดยสองส่วน (dimer) ของ Cas2 จับเข้ากับสองส่วนของ Cas1 ในกลุ่มรวมนี้ Cas2 มีหน้าที่เป็นโครงสร้างแบบไม่ใช้เอนไซม์ และจับกับชิ้นสายคู่ของดีเอ็นเอจากภายนอก ขณะที่ Cas1 จับกับด้านข้างของดีเอ็เอส่วนสายเดี่ยวและช่วยเร่งในการรวมเข้ากับแถวลำดับคริสเปอร์ สเปสเซอร์ใหม่ถูกเพิ่มในส่วนเริ่มของคริสเปอร์ต่อจากลำดับนำ (leader sequence) ทำให้เป็นการบันทึกการติดเชื้อไวรัสตามลำดับเวลา

โมทีฟติดกับโปรโตสเปสเซอร์

การวิเคราะห์ทางชีวสารสนเทศศาสตร์บริเวณจีโนมเฟจที่ถูกตัดเป็นสเปสเซอร์ (เรียกว่าโปรโตสเปสเซอร์, protospacer) ชี้ว่าไม่ได้เป็นการเลือกอย่างสุ่ม ทว่าถูกพบติดกับลำดับดีเอ็นเอสั้น ๆ (3 – 5 คู่เบส) ที่เรียกว่า protospacer adjacent motifs หรือ แพม (PAM) การวิเคราห์ของระบบคริสเปอร์-แคสแสดงว่าลำดับแพมมีความสำคัญสำหรับระบบแบบที่ 1 (type I) และแบบที่ 2 (type II) ทว่าไม่สำคัญในแบบที่ 3 (type III) ระหว่างการได้มาซึ่งสเปสเซอร์ ในระบบแบบที่ 1 และ 2 โปรโตสเปสเซอร์ถูกตัดบนตำแหน่งติดกับลำดับแพม โดยอีกด้านหนึ่งของสเปสเซอร์ถูกตัดโดย ruler mechanism ทำให้ขนาดของสเปสเซอร์ใกล้เคียงกันในแถวลำดับคริสเปอร์ การอนุรักษ์ลำดับแพมแตกต่างกันไปในคริสเปอร์-แคสแต่ละระบบและอาจเชื่อมโยงกับ Cas1 และลำดับนำ (leader sequence)

สเปสเซอร์ใหม่ถูกเพิ่มเข้าไปในแถวลำดับคริสเปอร์โดยมีทิศทางที่แน่นอน มักเลือกที่จะ แต่ไม่เพียงแต่ติดกับลำดับนำ การวิเคราะห์ของระบบไอ-อีจาก E. coli แสดงว่าลำดับซ้ำแรกติดกับลำดับนำถูกคัดลอก โดยมีสเปสเซอร์ใหม่ที่พึ่งได้มาแทรกระหว่างลำดับซ้ำแรกและสอง

ลำดับแพมน่าจะมีความสำคัญระหว่างการแทรกสเปสเซอร์ในระบบไอ-อี ลำดับนั้นมีส่วนประกอบของนิวคลีโอไทด์ท้ายที่ถูกคงไว้ติดกับนิวคลีโอไทด์แรกของโปรโตสเปสเซอร์ นิวครีโอไทด์นี้กลายเป็นเบสสุดท้ายของลำดับซ้ำโดยตรง (direct repeat) ชิ้นแรก สิ่งนี้ชี้ว่ากลไกการได้มาซึ่งสเปสเซอร์ทำให้เกิดส่วนยื่นสายเดี่ยวในตำแหน่งรองท้ายของลำดับซ้ำโดยตรงและลำดับแพมระหว่างการแทรกสเปสเซอร์ อย่างไรก็ตาม ไม่ใช่ทุกแบบของคริสเปอร์-แคสจะใช้กลไกนี้ ด้วยความที่แพมในสิ่งมีชีวิตอื่นไม่แสดงการคงไว้ของตำแหน่งสุดท้ายในระดับเท่ากัน เป็นไปได้ว่าระบบเหล่านี้ทำให้เกิดปลายทู่ที่ไม่มีส่วนยื่นออกมาตรงส่วนท้ายของลำดับซ้ำโดยตรงและโปรโตสเปสเซอร์ระหว่างการได้มาซี่งสเปสเซอร์

การประยุกต์


ภายใน พ.ศ. 2557 มีงานวิจัยกว่า 1,000 งานที่กล่าวถึงคริสเปอร์ถูกตีพิมพ์ เทคโนโลยีถูกใช้เพื่อหยุดยั้งการปฏิบัติงานของยีนในเซลล์ไลน์มนุษย์และในเซลล์, เพื่อศึกษา Candida albicans, เพื่อปรับแต่งยีสต์เพื่อผลิตเชื้อเพลิงชีวภาพ และเพื่อปรับแต่งพันธุกรรมของสายพันธุ์พืช คริสเปอร์ยังสามารถถูกใช้เพื่อเปลี่ยนยุงให้ไม่สามารถถ่ายทอดโรค เช่น มาลาเรีย

การประเมินคำอ้างใหม่สำหรับความสัมพันธ์ระหว่างยีนกับโรคบนฐานของคริสเปอร์นำไปสู้การค้นพบความผิดปกติที่อาจมีความสำคัญ


การซ่อมแซมดีเอ็นเอหลังสายทั้งสองของดีเอ็นเอขาด (double-strand break, DSB)


พันธุวิศวกรรม


การแก้ไขจีโนมโดยคริสเปอร์/แคสไนน์ใช้ระบบคริสเปอร์แบบที่ 2 โดยใช้ Cas9, crRNA, tracrRNA และอาจใช้ร่วมกับส่วนของต้นแบบการซ่อมแซมดีเอ็นเอเพื่อช่วยในการเชื่อมต่อชิ้นส่วนโครโมโซมที่ไม่ใช่คู่ของมันเอง (non-homologous end joining, NHEJ) หรือ homology directed repair (HDR) ในการแก้ไขจีโนม


ส่วนประกอบหลัก


ส่วรประกอบ และ หน้าที่

crRNA : มีไกด์อาร์เอ็นเอซึ่งหาที่ตั้งของดีเอ็นเอของโฮสต์พร้อมกับตำแหน่ที่จับกับ tracrRNA (มักอยู่ในรูปห่วง, hairpin loop) เกิดเป็นกลุ่มรวมพร้อมปฏิบัติการ


tracrRNA : จับกับ crRNA และเกิดเป็นกลุ่มรวมพร้อมปฏิบัติการ


sgRNA : ย่อมาจาก Single guide RNAs เป็นการรวมกันของอาร์เอ็นเอประกอบด้วย tracrRNA และ crRNA อย่างน้อยหนึ่งชิ้น


Cas9    :
โปรตีนที่รูปแบบพร้อมปฏิบัติการสามารถปรับแต่งดีเอ็นเอได้ มีหลายรูปแบบที่มีหน้าที่แตกต่างกัน (เช่น การตัดสายเดี่ยว การตัดสายคู่ การจับกับดีเอ็นเอ) เป็นผลจากหน้าที่ของ Cas9 ในการรู้จำตำแหน่งดีเอ็นเอ


ต้นแบบการซ่อมแซม (repair template) : ดีเอ็นเอที่นำกระบวนการซ่อมแซมเซลทำให้สามารถแทรกลำดับดีเอ็นเอเฉพาะได้

คริสเปอร์/แคสไนน์มักใช้พลาสมิดเพื่อบุกรุก (transfect) เซลล์เป้าหมาย ส่วนประกอบหลักของพลาสมิดแสดงอยู่ในรูปทางขวา เริ่มจากการออกแบบ crRNA สำหรับการประยุกต์ใช้แต่ละครั้งด้วยความที่สิ่งนี้เป็นลำดับที่ Cas9 ใช้เพื่อระบุและจับโดยตรงกับดีเอ็นเอของเซลล์ crDNA ต้องจับกับที่ซึ่งต้องการแก้ไขเท่านั้น ต้นแบบการซ่อมแซมถูกออกแบบสำหรับการใช้แต่ละครั้งด้วยความที่ต้องทับซ้อนกับด้านใดด้านหนึ่งที่ถูกตัดและต้องเป็นรหัสสำหรับการแทรกลำดับ

crRNAs และ tracrRNA หลายชิ้นสามารถบรรจุเข้าด้วยกันเพื่อสร้าง single-guide RNA (sgRNA) โดยสามารถนำ sgRNA นี้ไปต่อกับยีน Cas9 ในพลาสมิดเพื่อบุกรุกเข้าสู่เซลล์

ภาพรวมของการบุกรุกและการตัดดีเอ็นเอโดยคริสเปอร์แคสไนน์ (crRNA และ tracrRNA มักเชื่อมกันเป็นสายอาร์เอ็นเอเดียวขณะออกแบบพลาสมิด)


                                     


                                       
แผนภาพกลไกของคริสเปอร์เป็นการป้องกันตัวจากไวรัสในโพรแคริโอต


                                     


                                   
โลคัสพันธุกรรมคริสเปอร์ทำให้แบคทีเรียมีกลไกลการป้องกันตัวจากการติดเชื้อเฟจซ้ำ


                                   


                               
อาร์เอ็นเอจากดีเอ็นเอของโลคัสพันธุกรรมคริสเปอร์และการเติบโตของ pre-crRNA


                               


                                           
รูปร่างสามมิติของ CRISPR-Cas9 Interference Complex
แสดงความคิดเห็น
โปรดศึกษาและยอมรับนโยบายข้อมูลส่วนบุคคลก่อนเริ่มใช้งาน อ่านเพิ่มเติมได้ที่นี่