โทรศัพท์สมาทโฟนถูก(นิยามจัดเป็นเครื่องมือสือสารอยู่ใช้ใหม)แต่ทางปฎิบัติมันน่าจะอยู่กลุ่มเดียวกับคอมพิวเตอร์แล้ว?

Current Applied Science and Technology Vol. 18 No. 3 Sep. - Dec. 2018 DOI: 10.14456/cast.2018.8 126 The Effect of Ti-doped on the Structure of Y134 and Y257 Superconductors Thitipong Kruaehong1* Supphadate Sujinnapram2 , Pongkaew Udomsamuthirun3 , Tunyanop Nilkamjon3 and Sermsuk Ratreng3 1 Department of Physics, Faculty of Science and Technology, Suratthani Rajabhat University, Suratthani, Thailand 2 Department of Physics, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand 3 Prasanmitr Physics Research, Department of Physic, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand Received: 21 November 2017, Revised: 21 August 2018, Accepted: 9 November 2018 Abstract The powder of Y134, Y257 and Ti composite was synthesized by solid state reaction. The crystal structure of the powder was investigated by using powder X-ray diffraction. The raw data of XRD was characterized for phase separation of composition. The samples consist of a superconducting phase with orthorhombic structure and Pmmm space group and a non-superconducting phase that have various structures and space groups. The Ti doped affected the increasing c lattice parameters and superconducting phase. The impurity phase had no effect on increasing the c lattice superconducting phase. The c lattice parameters and superconducting phase was increased following the Ti-doped. Keywords: Y134 superconductor, Y257 superconductor, titanium-doped 1. Introduction During the past thirty years, many researchers have intensively carried out experiments on the properties of Y123 as synthesized by Chu and co-workers [1] In 1987 with the critical temperature at 93 K. The Y123 superconducting material was one of the materials chosen for candidate application such as magnetic bearing [2], flywheel energy storage [3] and microwave devices [4], etc. The properties of this material were high-current density and high critical magnetic fields [5]. The development of this material requires a crystal structure. The Y123 has the orthorhombic perovskite structure with two CuO2 planes and one Cu-O chain [6]. The superconductivity occurs in the CuO2 plane, but the Cu-O chain is non-superconducting and acts as charge reservoirs as show in Figure 1 [7]. After the discovery of Y123, The Y124 [8] and Y247 [9] have a critical * Corresponding author: Tel.: +66 851 09 0567 Fax: +66 77355 666 E-mail: kruaehong@hotmail.com
The two series of polycrystalline Y134 (YBa3Cu4TixO9-x) and Y257(Y2Ba5Cu7TixO15-x) with x=0, 0.05, 0.10, 0.15, 0.20 and 0.25 were prepared by the solid state reaction method from appropriate amounts of high-purity powder of Y2O3, BaCO3, CuO and TiO2. The calcinations of mixture powder were twice operated at a temperature of 950o C for 24 hrs. The result of each series was powders. Finally, the powder was pressed into pellets and sintered at 950o C for 24 hrs, annealed at 500o C for 12 hrs in an oxygen atmosphere and cooled down to room temperature with a heating rate of 2o C/min. The pellets of the each series were then reground to powder. The structural analysis was done by Powder X-ray Diffraction method(Philips, Netherlands) with a scan range(2θ) of 5o -90o . The X-ray source of Cu tube and X-ray generator at 40 kV and 30 mA is step time 3 sec/min with step size(2θ) at 0.05o and the wavelength of X-ray at λ= 1.5406 Å. The scan speed was 1o /min at room temperature. The source of the X-ray was CuKα radiation and Ni was a filter. The Rietveld method characterized raw data of XRD for determined space groups and the lattice parameter of composition, respectively. 3. Results and Discussion The XRD pattern of the samples is shown in Figure 2 Pure Y134 and Y257 are represented in blue. The samples with doped Ti are shown in a different color. The spectrum of our samples was similar to the Y123 spectrum [18] at the 2θ at 32o . The impurity occurred because of the increasing of Ti concentration. The planes of superconducting the Y134 ocurred at (hkl) as (0 0 3), (010) and (0 0 4) and at the 2θ at 17.414o , 22.852o and 23.289o , respectively. The (hkl) of Y257 appeared as(1 0 3), (1 1 1) and (0 0 6) and at the 2θ at 29.276o , 33.434o and 35.247o , respectively. All planes of the two samples show an orthorhombic structure. Figure 2. XRD pattern of Y134+Ti and Y257+Ti superconductors The samples consist of two phases. The first was a superconducting phase with an orthorhombic structure and Pmmm space group symmetry and the second was a nonsuperconducting phase with various space groups as shown in Table 1. The Y134+0.25 and Y257+0.25 show the highest superconducting phase in Y134 and Y257. Thus, increasing the Ti concentration also increased the superconducting phase. The lattice parameters of the superconducting phase is shown in Table 2. The c lattice parameter of Y257 with Ti composite 
was twice as long as Y134. Increasing the superconducting phase also causes a in longer c lattice parameter. The Y134 and Ti composite does not have the non-superconducting phase of Y211. Table 1. The percentage of superconducting and non-superconducting compounds Samples Superconducting Compound Non-superconducting Compounds (Y2BaCuO5), Pbnm BaCuO2, Im-3m Ba2Cu3O6, Pccm Y134 60 - 20 20 Y257 70 30 - - Y134+0.05Ti 72 - 18 10 Y257+0.05Ti 76 24 - - Y134+0.10Ti 74 - 16 10 Y257+0.10Ti 80 20 - - Y134+0.15Ti 79 - 11 10 Y257+0.15Ti 85 - 10 5 Y134+0.20Ti 82 - 15 3 Y257+0.20Ti 90 - 5 5 Y134+0.25Ti 88 - 10 2 Y257+0.25Ti 95 - 5 - Table 2. The lattice parameter of superconducting compounds Samples Lattice constant a(Å) b(Å) c(Å) Y134 3.80926 3.86889 15.13311 Y257 3.81974 3.88374 26.49670 Y134+0.05Ti 3.80924 3.86598 15.15486 Y257+0.05Ti 3.82896 3.88965 26.50630 Y134+0.10Ti 3.82172 3.88705 15.18759 Y257+0.10Ti 3.81917 3.88797 26.51320 Y134+0.15Ti 3.80939 3.88326 15.24488 Y257+0.15Ti 3.82412 3.87321 26.52132 Y134+0.20Ti 3.80918 3.88134 15.31448 Y257+0.20Ti 3.82432 3.88542 26.53212 Y134+0.25Ti 3.82451 3.88123 15.35231 Y257+0.25Ti 3.81596 3.86231 26.54321 In this study the physical properties and crystal structure of the high-temperature superconductor were investigated the impurity phase was present and important for analysis of the experiment data. The impurity phase was related to precursors of the materials. However, generally the impurities phase occured during the heat treatment. Table 3 shows each of the impurities in the samples in 3 catetories. The first impurity was Y211 (Y2BaCuO5). The Y211 influenced the microstructure of the superconducting properties of the samples. It is well known that the samples with a Y211 inclusion raised the critical current density (Jc) [19] and critical magnetic field [20]. However, Y211 inclusion exceeded 40 mol% [21] in the samples [22]. Additionally, the Y211 had a positive effect on the magnetic properties as a good pinning center [23]. One phase of the impurities appeared as a result of the samples in BaCuO2 where the physical properties have not been often reported. The appearance of BaCuO2 is highly 
inhomogeneous to the surface of the samples. The oxygen content of BaCuO2 varies between 1.8- 2.5 in the chemical formula [24]. The variation of the oxygen content of BaCuO2 changes following the Cu2+ [25] ion in the crystal structure. Small amounts of Ba2Cu3O6 in the last phase of the impurity can be detected. The Ba2Cu3O6 and BaCuO2 that appear in the samples showed a defective crystal structure. Table 3. The lattice parameter of non-superconducting compounds Samples Non-Superconducting Compounds Y2BaCuO5, Pbnm BaCuO2, Im-3m Ba2Cu3O6, Pccm a(Å) b(Å) c(Å) a(Å) b(Å) c(Å) a(Å) b(Å) c(Å) Y134 - - - 18.31372 18.31372 18.31372 13.05722 20.63098 11.39764 Y257 7.25231 12.23212 5.54890 - - - - - - Y134+0.05Ti - - - 18.30035 18.30035 18.30035 13.02788 20.63243 11.39855 Y257+0.05Ti 7.21762 12.07321 5.63210 - - - - - - Y134+0.10Ti - - - 18.29048 18.29048 18.29048 13.00549 20.60827 11.37064 Y257+0.10Ti 7.24030 12.15212 5.65223 - - - - - - Y134+0.15Ti - - - 18.29277 18.29277 18.29277 13.00968 20.61089 11.37079 Y257+0.15Ti - - - 18.27230 18.27230 18.27230 13.02557 20.64878 11.39420 Y134+0.20Ti - - - 18.35385 18.35385 18.35385 13.07883 20.68951 11.44247 Y257+0.20Ti - - - 18.29818 18.29818 18.29818 13.01123 20.67820 11.48885 Y134+0.25Ti - - - 18.23412 18.23412 18.23412 13.05234 20.68235 11.45685 Y257+0.25Ti - - - 18.31958 18.31958 18.31958 13.02392 20.67834 11.40198 Y134 and Y257 with Ti composites were synthesized by using solid state reaction and used the temperature to powder calcined and sitered at 950 o C. The powders samples were investigated to study the crystal structure by using powder X-ray Diffraction. The characterized and lattice parameters of phases composition used the Reitveld refinement method. The samples divided into two phases, The superconducting phase had an orthorhombic structure and Pmmm symmetry. The non-superconducting phase had 3 categories. The Y211 had the orthorhombic structure with Pbnm space group. The BaCuO2 had the cubic structure with Im-3m space group. The final phase of the non-superconducting sample was Ba2Cu3O6 had an orthorhombic structure with Pccm space group. The effect of the Ti doped on the Y134 and Y257 showed a more superconducting-phase and longer c lattice parameter. The Y134 and Y134 with Ti composite does not have the impurity of Y211. 4. Conclusions Y134 and Y257 with Ti composites were synthesized by using solid state reaction and used the temperature to powder calcined and sitered at 950o C. The powders samples were investigated to study the crystal structure by using powder X-ray Diffraction. The characterized and lattice parameters of phases composition used the Reitveld refinement method. The
แก้ไขข้อความเมื่อ
คำตอบที่ได้รับเลือกจากเจ้าของกระทู้
ความคิดเห็นที่ 2
Current Applied Science and Technology Vol. 18 No. 3 Sep. - Dec. 2018
DOI: 10.14456/cast.2018.8
126
The Effect of Ti-doped on the Structure of Y134 and Y257
Superconductors
Thitipong Kruaehong1* Supphadate Sujinnapram2
, Pongkaew Udomsamuthirun3
,
Tunyanop Nilkamjon3
and Sermsuk Ratreng3
1
Department of Physics, Faculty of Science and Technology, Suratthani Rajabhat
University, Suratthani, Thailand
2
Department of Physics, Faculty of Liberal Arts and Science, Kasetsart University,
Kamphaeng Saen Campus, Nakhon Pathom, Thailand
3
Prasanmitr Physics Research, Department of Physic, Faculty of Science,
Srinakharinwirot University, Bangkok, Thailand
Received: 21 November 2017, Revised: 21 August 2018, Accepted: 9 November 2018
Abstract
The powder of Y134, Y257 and Ti composite was synthesized by solid state reaction. The crystal
structure of the powder was investigated by using powder X-ray diffraction. The raw data of XRD
was characterized for phase separation of composition. The samples consist of a superconducting
phase with orthorhombic structure and Pmmm space group and a non-superconducting phase that
have various structures and space groups. The Ti doped affected the increasing c lattice parameters
and superconducting phase. The impurity phase had no effect on increasing the c lattice
superconducting phase. The c lattice parameters and superconducting phase was increased
following the Ti-doped.
Keywords: Y134 superconductor, Y257 superconductor, titanium-doped
1. Introduction
During the past thirty years, many researchers have intensively carried out experiments on the
properties of Y123 as synthesized by Chu and co-workers [1] In 1987 with the critical temperature
at 93 K. The Y123 superconducting material was one of the materials chosen for candidate
application such as magnetic bearing [2], flywheel energy storage [3] and microwave devices [4],
etc. The properties of this material were high-current density and high critical magnetic fields [5].
The development of this material requires a crystal structure. The Y123 has the orthorhombic
perovskite structure with two CuO2 planes and one Cu-O chain [6]. The superconductivity occurs
in the CuO2 plane, but the Cu-O chain is non-superconducting and acts as charge reservoirs as
show in Figure 1 [7]. After the discovery of Y123, The Y124 [8] and Y247 [9] have a critical
*
Corresponding author: Tel.: +66 851 09 0567 Fax: +66 77355 666
E-mail: kruaehong@hotmail.com
แสดงความคิดเห็น
โปรดศึกษาและยอมรับนโยบายข้อมูลส่วนบุคคลก่อนเริ่มใช้งาน อ่านเพิ่มเติมได้ที่นี่