Elements เป็นหนังสือที่มีคนอ่านมากที่สุดเป็นลำดับสองรองจากคำภีร์ไบเบิ้ล และถ้าไม่นับรวมคำภีร์ไบเบิ้ลแล้ว อาจกล่าวได้ว่าไม่มีหนังสือเล่มใดจะมีอิทธิพลต่อวิถีชีวิตของมนุษย์และถูกใช้อย่างกว้างขวางเท่ากับ Elements ว่ากันว่าในทันทีที่หนังสือ Elements ออกมายุคลิดก็ได้รับการกล่าวถึงอย่างชื่นชมอย่างกว้างขวาง ทั้งที่จริง ๆ แล้วยุคลิดมีผลงานออกมาแล้วหลายเล่ม และนับตั้งแต่สมัยของยุคลิดจนกระทั่งถึงสมัยใหม่หากเพียงแต่กล่าวว่าทฤษฎีหรือบทสร้างที่เท่าใด ใน Elements เล่มไหนก็จะสร้างสามารถบอกได้ทันทีว่าทฤษฎีบทหรือบทสร้างนั้นมีใจความว่าอย่างไร
หนังสือ Elements ได้รับการ
ปรับปรุงแก้ไขมากกว่า 1 พันครั้งและเป็นเวลานานกว่า 2 พันปีที่ Elements มีอิทธิพลต่อการสอนวิชาเรขาคณิตในสถาบันการศึกษาทั่วโลก
700 ปีหลังจากที่ยุคลิดได้เขียนหนังสือ Elements ขึ้น
ธีออน (Theon, ประมาณ ค.ศ. 390) เป็นผู้ปรับปรุง Elements เป็นท่านแรก หลังจากนั้นก็มีการปรับปรุงอีก จนกระทั่งเริ่มคริสต์ศตวรรษที่ 19
มีการค้นพบ Elements ที่ห้องสมุดสำนักวาติกัน ซึ่งเชื่อกันว่าเป็นฉบับที่คัดลอกมาจากฉบับที่ปรับปรุงโดยธีออน บทนิยาม สัจพจน์ (ทั้ง Axioms และ Postulates) แตกต่างจากของเดิมบ้าง แต่ทฤษฎีบทและการพิสูจน์ยังคงคล้ายคลึงกับที่ยุคลิดเขียน
การแปล Elements เป็นภาษาละตินครั้งแรกมิได้แปลจากต้นฉบับที่เป็นภาษากรีก แต่แปลจากต้นฉบับที่เป็นภาษาอาหรับ เหตุที่เป็นเช่นนี้เพราะว่าในสมัยที่อะเล็กซานเดรียเสื่อมลง และตกเป็นส่วนหนึ่งของโรมัน ความรู้ต่าง ๆ ถูกขนย้ายไปอยู่ทีตะวันออกกลาง และที่นั่นเองได้มีการเก็บรักษาความรู้ของชาวกรีกที่อะเล็กซานเดรีย รวมถึงการแปลหนังสือต่าง ๆ จากภาษากรีกเป็นภาษาอาหรับ ซึ่งเป็นผลดีเพราะเป็นการเก็บรักษาความรู้ของกรีกไว้ตลอดระยะเวลาที่ยุโรปตกอยู่ในยุดมืด (Dark Age) ต่อมาหลังจากพ้นยุคมืดไปแล้วก็ได้มีนักปราชญ์หลายท่านได้แปล Elements จากภาษาอาหรับเป็นภาษาละติน
จนกระทั่งปี ค.ศ. 1570 Elements ภาคภาษาอังกฤษฉบับสมบูรณ์ฉบับแรกก็ไดรับการตีพิมพ์ออกมา
หน้าปกหนังสือ Elements ฉบับภาษาอังกฤษ
ลักษณะสำคัญของหนังสือ Elements
1. หนังสือ Elements ถือว่าเป็นต้นแบบของระบบคณิตศาสตร์ในปัจจุบัน กล่าวคือในหนังสือ Elements ยุคลิดได้
กำหนดข้อตกลงขึ้น 10 ประการ ยุคลิดเรียกข้อตกลง 5 ประการแรกว่าสัจพจน์ (Axioms) หรือคอมมอนโนชั่น (Common Notions) ซึ่งหมายถึงสิ่งที่เห็นได้จริงโดยไม่ต้องมีการพิสูจน์ในคณิตศาสตร์ทุกแขนง ส่วนข้อตกลง 5 ประการหลังยุคลิดเรียกว่าพอสจูเลต (Postulates) หมายถึงสิ่งที่เห็นได้จริงโดยไม่ต้องพิสูจน์ในทางเรขาคณิต ข้อตกลงดังกล่าวมีดังนี้//
A1 สิ่งทั้งหลายที่เท่ากับสิ่งเดียวกัน สิ่งเหล่านั้นย่อมเท่ากัน
A2 สิ่งที่เท่ากัน เมื่อถูกเพิ่มด้วยสิ่งที่เท่ากัน ผลย่อมเท่ากัน
A3 สิ่งที่เท่ากัน เมื่อถูกหักออกด้วยสิ่งที่เท่ากัน ผลย่อมเท่ากัน
A4 สิ่งที่ทุกอย่างร่วมกันย่อมเท่ากัน
A5 ส่วนรวมย่อมใหญ่กว่าส่วนย่อย
P1 ลากเส้นตรงจากจุดหนึ่งไปยังอีกจุดหนึ่งได้
P2 ต่อเส้นตรงที่มีความยาวจำกัดออกไปเรื่อย ๆ
P3 เขียนวงกลมได้เมื่อกำหนดจุดศูนย์กลางและระยะทางใด ๆ
P4 มุมฉากทุกมุมย่อมเท่ากัน
P5 ถ้าเส้นตรงเส้นหนึ่ง ผ่านเส้นตรง 2 เส้น ทำให้มุมภายในที่อยู่ด้านเดียวกันรวมกันน้อยกว่า 2 มุมฉาก แล้วเส้นตรงสองเส้นจะตัดกันทางด้านที่มีมุมรวมกันน้อยกว่า 2 มุมฉาก ถ้าลากเส้นนั้นต่อไปเรื่อยๆ
จากข้อตกลงทั้ง 10 ประการนี้ ยุคลิดสามารถนำไปสร้างทฤษฎีบทได้ 465 ทฤษฎี โดยใช้วิธีการที่เรียกว่า “การสังเคราะห์” ด้วยการนำบทนิยามหรือทฤษฎีที่รู้แล้ว ประกอบกับการให้เหตุผลเชิงตรรกศาสตร์ ไปสร้างข้อสรุปหรือทฤษฎีบทใหม่ที่มีความซับซ้อนมากขึ้นม ต่อจากนั้นจึงได้ใช้วิธีการวิเคราะห์พิสูจน์ข้อสรุปหรือทฤษฎีบทเหล่านั้นว่าเป็นจริง
2. ยุคลิดให้นิยามคำศัพท์ทุกคำที่ต้องใช้ในหนังสือ Elements เช่น คำว่าจุด เส้น ระนาบ เป็นต้น
3. การพิสูจน์ที่ปรากฏในหนังสือ Elements ยุคลิดได้พยายามใช้หลักเกณฑ์อย่างเคร่งครัด นอกจากนี้การพิสูจน์ทฤษฎีบทบางบท จัดได้ว่าเป็นวิธีการให้เหตุผลเชิงคณิตศาสตร์ที่สละสลวยและสวยงาม จนถือเป็นแบบฉบับมาจนทุกวันนี้ เช่น การพิสูจน์ว่า จำนวนเฉพาะมีจำนวนไม่จำกัด เป็นต้น[3]
หนังสือ Elements มีทั้งหมด 13 เล่ม ซึ่งมีเนื้อหาส่วนใหญ่เกี่ยวกับเรขาคณิต แต่ก็มีการกล่าวถึงพีชคณิต เรขาคณิตเชิงพีชคณิตเบื้องตน และทฤษฎีจำนวนเบื้องต้น เนื้อหาส่วนใหญ่เป็นผลงานของคนอื่น แต่ทว่ายุคลิดได้นำผลงานของนักปราชญ์คนอื่น ๆ ในสมัยก่อน ๆ มารวบรวมเข้าด้วยกันอย่างมีระบบ และเป็นลำดับเหตุผลต่อเนื่องกัน ซึ่งเนื้อหาของทั้ง 13 เล่ม มีรายละเอียดโดยสังเขปดังนี้
เล่ม 1 ประกอบไปด้วยบทนิยาม 13 นิยาม สัจพจน์ 10 ข้อ ยุคลิดเรียกสัจพจน์ 5 ข้อแรกว่า Postulates และ 5 ข้อหลังเรียกว่า Common notion และทฤษฎีบทอีก 48 ทฤษฎีบท ซึ่งรวมถึงทฤษฎีปีทาโกรัสและบทกลับเอาไว้ด้วย
เล่ม 2 เกี่ยวกับการเปลี่ยนรูป พื้นที่ของรูปต่าง ๆ และพีชคณิตเชิงเรขาคณิตของปีทาโกรัส
เล่ม 3 เป็นทฤษฎีบทเกี่ยวกับวงกลม คอร์ด เส้นสัมผัสวงกลมและการวัดมุมต่าง ๆ
เล่ม 4 เป็นการอภิปรายผลงานของโรงเรียนปีทาโกเรียน เรื่อง การสรางรูปหลายเหลี่ยมด้านเท่าโดยใช้วงเวียนและสันตรง
เล่ม 5 ยุคลิดนำแนวคิดของยูโดซุสมาอธิบายเรื่องทฤษฎีสัดส่วนได้อย่างดีเยี่ยม และนำการประยุกต์ในการหาขนาด ซึ่งแก้ปัญหาที่เกิดขึ้นจากการค้นพบจำนวนอตรรกยะ
เล่ม 6 นำทฤษฎีสัดส่วนของยูโดซุสมาใช้กับเรขาคณิตในระนาบเกี่ยวกับทฤษฎีบทของรูปสามเหลี่ยมคล้าย
เล่ม 7 ทฤษฎีจำนวน: การจำแนกจำนวนเป็นจำนวนคู่ จำนวนคี่ จำนวนเฉพาะ และจำนวนนสมบูรณ์ (Perfect Number) ตัวหารร่วมมาและตัวคูณร่วมน้อย
เล่ม 8 สัดส่วนต่อเนื่อง
เล่ม 9 เกี่ยวกับทฤษฎีจำนวนต่อจากเล่ม 7 และ 8 ทฤษฎีที่มีชื่อเสียงของเล่มนี้คือ จำนวนเฉพาะมีจำนวนไม่จำกัด
เล่ม 10 เกี่ยวกับเรขาคณิตที่เกี่ยวกับจำนวนอตรรกยะ
เล่ม 11 ความรู้เกี่ยวกับเรขาคณิตสามมิติที่สมนัยกับเล่ม 1
เล่ม 12 เรื่องปริมาตรและทฤษฎีบทของยูโดซุสเกี่ยวกับระเบียบวิธีเกษียณ (Method of exhaustion) ซึ่งเป็นพื้นฐานนำไปสู่เรื่องลิมิต (Limit)
เล่ม 13 เกี่ยวกับการสร้างรูปทรฝฝ
แม้ว่ายุคลิดจะไม่ได้เป็นนักคณิตศาสตร์ที่สร้างสรรค์งานทางคณิตศาสตร์ขึ้นใหม่ แต่งานที่เขารวบรวมขึ้นอย่างเป็นระบบ กลับกลายเป็นผลงานที่มีผลกระทบต่อมนุษยชาติมามากกว่า 2000 ปี โดยเฉพาะทางด้านเรขาคณิต จึงไม่น่าแปลกถ้าหากเราไปอ่านหนังสือบางเล่ม จะกล่าวยกย่องว่ายุคลิด คือ
บิดาแห่งวิชาเรขาคณิต
เรื่องเล่าเกี่ยวกับยุคลิด
ปัปปุส (Pappus, ประมาณ ค.ศ. 300) นักคณิตศาสตร์ที่มีชื่อเสียงอีกท่านหนึ่งเคยยกย่องยุคลิดไว้ว่า “
เมื่อเปรียบเทียบกับอะโปลโลเนียส (Apollonius of Perga, ประมาณ 225 ปีก่อนคริสต์ศักราช) แล้ว ยุคลิดช่างเป็นคนที่ถ่อมตนและนึกถึงคนอื่น ๆ อยู่เสมอ”
โปรคลุส (Proclus, ค.ศ. 410 – 485) ได้เล่าเรื่องราวเกี่ยวกับยุคลิดในหนังสือ Eudemian Summary ว่า “เมื่อยุคลิดได้เป็นพระอาจารย์วิชาเรขาคณิตในพระเจ้าทอเลมีที่ 1 พระองค์มีรับสั่งถามยุคลิดว่า ‘มีทางลัดสำหรับการเรียนวิชาเรขาคณิตไหม?’ ยุคลิดทูลตอบว่า ‘ไม่มีลาดพระบาทสำหรับการเรียนเรขาคณิต’ (There is no royal road to geometry.)” กล่าวคือ การศึกษาวิชาเรขาคณิตไม่ใช่สิ่งที่สะดวกสบายและทำได้ง่าย ๆ แต่มีบางคนกล่าวว่าคำพูดนี้เป็นคำพูดของเมแนชมุส (Menaechmus, ประมาณ 350 ปีก่อนคริสต์ศักราช) เมื่อทูลตอบพระเจ้าอะเล็กซานเดอร์มหาราช
เมื่อมีลูกศิษย์คนหนึ่งถามยุคลิดในระหว่างที่เรียนเรขาคณิตว่า “เราจะได้อะไรเป็นผลตอบแทนบ้างจากการเรียนสิ่งที่ยากเหล่านี้” (What will I get by learning difficult thing?) ซึ่งคำถามนี้คงจะหมายความว่าจะนำความรู้ทางเรขาคณิตไปใช้ประโยชน์อะไรได้บ้าง เพราะเรขาคณิตที่ยุคลิดสอนนั้นมีแต่การพิสูจน์และการให้เหตุผล ซึ่งเป็นการยากที่ยุคลิดจะตอบได้ในทันทีทันใด ท่านจึงสั่งให้ทาสไปหยิบเหรียญเงิน 2 โอปอลมา 1 เหรียญมอบให้แก่ลูกศิษย์คนนั้นและตอบว่า “เจ้าจะต้องได้รับกำไรหรือประโยชน์จากสิ่งที่เรียนรู้แน่นอน” (for he must make a profit from what he learns.) ที่ยุคลิดกล่าวเช่นนั้นเพื่อแสดงให้เห็นว่าในการเรียนวิชาคณิตศาสตร์ไม่มีทางลัด และไม่สามารถเรียนหรือฝึกหัดแทนกันได้ ผู้เรียนจะต้องพอใจและรักในวิชาคณิตศาสตร์เพราะตัววิชาคณิตศาสตร์เอง
จากเรื่องที่เล่ามานี้แสดงให้เห็นว่า ยุคลิดเป็นผู้ที่มีความรอบรู้และมีความอดทน และเป็นครูที่ดี เป็นนักอนุรักษ์ เป็นผู้ที่อุทิศเวลาให้กับการศึกษาคณิตศาสตร์ และเป็นผู้ที่มีความลึกซึ้งในวิชาคณิตศาสตร์มาก
ผลงานของยุคลิดนอกจาก Elements
ผลงานที่สำคัญของยุคลิดคือการเขียนตำราทางคณิตศาสตร์และดารศาสตร์ ผลงานบางชิ้นสูญหายไปแล้ว เช่น งานเขียนเกี่ยวกับภาคตัดกรวยที่ยุคลิดรวบรวมจากการค้นคว้าของอริสเตอุส (Aristaeus, ประมาณ 320 ปีก่อนคริสต์ศักราช) ซึ่งเป็นนักเรขาคณิตยุคเดียวกับยุคลิด และงานเขียนเกี่ยวกับภาคตัดกรวยเช่นกันแต่เป็นผลงานของเมแนชมุส
ยุคลิดมีผลงานอย่างน้อยที่สุด 9 ชิ้น ได้แก่ Elements, Data, On Divisions (หรือ ), Pseudaria, Porissms, Conics, Phacnomena, Optics, Elements of Music แต่มีผลงานที่
ยังคงเหลืออยู่ในปัจจุบัน 5 ชิ้นด้วยกัน คือ
1.
Division of Figures กล่าวถึงการแบ่งรูปในระนาบ ประกอบด้วยทฤษฎีบท 36 บท เช่น ทฤษฎีบทที่ 1 ว่าด้วยการสร้างเส้นตรงให้ขนานกับฐานของสามเหลี่ยมและแบ่งสามเหลี่ยมออกเป็นสองส่วนโดยมีพื้นที่เท่ากัน เป็นต้น
2.
Data เปรียบเทียบได้กับคู่มือการสอนที่ใช้ควบคู่กับหนังสือ Elements 6 เล่มแรก เนื้อหาสาระจึงเน้นที่การชี้แนะวิธีวิเคราะห์ปัญหาทางเรขาคณิต
3.
Phacnomena กล่าวถึงเรขาคณิตบนทรงกลม
4.
Optics กล่าวถึงการศึกษาเกี่ยวกับปรากฏการณ์ของแสง
5.
Elements
เป็นที่น่าเสียดายเหลือเกินที่เรารู้เรื่องราวต่าง ๆ ที่เกี่ยวข้องกับชีวิตและบุคลิกภาพของยูคลิดน้อยมาก รู้แค่เพียงว่าท่านเคยเป็นศาสตราจารย์ด้านคณิตศาสตร์ (professor of mathematics) ของมหาวิทยาลัยอะเล็กซานเดรีย (University of Alexandria) ต่อจาก พลาโต (Plato) และก่อนหน้า อาร์คีมีดีส (Archimedes) และได้ใช้ชีวิตอยู่ที่อะเล็กซานเดรียเป็นเวลานานรวมถึงเป็นผู้ก่อตั้งสำนักคณิตศาสตร์แห่งอะเล็กซานเดรีย (Alexandria School of Mathematics) ขึ้นด้วย ซึ่งสำนักแห่งนี้ก็มีชื่อเสียงต่อมาอีกเป็นเวลานาน
ยุคลิด
[SR] “Elements” หนังสือที่มีอิทธิพลต่อโลกรองจากคัมภีร์ไบเบิ้ล
หนังสือ Elements ได้รับการปรับปรุงแก้ไขมากกว่า 1 พันครั้งและเป็นเวลานานกว่า 2 พันปีที่ Elements มีอิทธิพลต่อการสอนวิชาเรขาคณิตในสถาบันการศึกษาทั่วโลก
700 ปีหลังจากที่ยุคลิดได้เขียนหนังสือ Elements ขึ้น ธีออน (Theon, ประมาณ ค.ศ. 390) เป็นผู้ปรับปรุง Elements เป็นท่านแรก หลังจากนั้นก็มีการปรับปรุงอีก จนกระทั่งเริ่มคริสต์ศตวรรษที่ 19
มีการค้นพบ Elements ที่ห้องสมุดสำนักวาติกัน ซึ่งเชื่อกันว่าเป็นฉบับที่คัดลอกมาจากฉบับที่ปรับปรุงโดยธีออน บทนิยาม สัจพจน์ (ทั้ง Axioms และ Postulates) แตกต่างจากของเดิมบ้าง แต่ทฤษฎีบทและการพิสูจน์ยังคงคล้ายคลึงกับที่ยุคลิดเขียน
การแปล Elements เป็นภาษาละตินครั้งแรกมิได้แปลจากต้นฉบับที่เป็นภาษากรีก แต่แปลจากต้นฉบับที่เป็นภาษาอาหรับ เหตุที่เป็นเช่นนี้เพราะว่าในสมัยที่อะเล็กซานเดรียเสื่อมลง และตกเป็นส่วนหนึ่งของโรมัน ความรู้ต่าง ๆ ถูกขนย้ายไปอยู่ทีตะวันออกกลาง และที่นั่นเองได้มีการเก็บรักษาความรู้ของชาวกรีกที่อะเล็กซานเดรีย รวมถึงการแปลหนังสือต่าง ๆ จากภาษากรีกเป็นภาษาอาหรับ ซึ่งเป็นผลดีเพราะเป็นการเก็บรักษาความรู้ของกรีกไว้ตลอดระยะเวลาที่ยุโรปตกอยู่ในยุดมืด (Dark Age) ต่อมาหลังจากพ้นยุคมืดไปแล้วก็ได้มีนักปราชญ์หลายท่านได้แปล Elements จากภาษาอาหรับเป็นภาษาละติน จนกระทั่งปี ค.ศ. 1570 Elements ภาคภาษาอังกฤษฉบับสมบูรณ์ฉบับแรกก็ไดรับการตีพิมพ์ออกมา
ลักษณะสำคัญของหนังสือ Elements
1. หนังสือ Elements ถือว่าเป็นต้นแบบของระบบคณิตศาสตร์ในปัจจุบัน กล่าวคือในหนังสือ Elements ยุคลิดได้กำหนดข้อตกลงขึ้น 10 ประการ ยุคลิดเรียกข้อตกลง 5 ประการแรกว่าสัจพจน์ (Axioms) หรือคอมมอนโนชั่น (Common Notions) ซึ่งหมายถึงสิ่งที่เห็นได้จริงโดยไม่ต้องมีการพิสูจน์ในคณิตศาสตร์ทุกแขนง ส่วนข้อตกลง 5 ประการหลังยุคลิดเรียกว่าพอสจูเลต (Postulates) หมายถึงสิ่งที่เห็นได้จริงโดยไม่ต้องพิสูจน์ในทางเรขาคณิต ข้อตกลงดังกล่าวมีดังนี้//
A1 สิ่งทั้งหลายที่เท่ากับสิ่งเดียวกัน สิ่งเหล่านั้นย่อมเท่ากัน
A2 สิ่งที่เท่ากัน เมื่อถูกเพิ่มด้วยสิ่งที่เท่ากัน ผลย่อมเท่ากัน
A3 สิ่งที่เท่ากัน เมื่อถูกหักออกด้วยสิ่งที่เท่ากัน ผลย่อมเท่ากัน
A4 สิ่งที่ทุกอย่างร่วมกันย่อมเท่ากัน
A5 ส่วนรวมย่อมใหญ่กว่าส่วนย่อย
P1 ลากเส้นตรงจากจุดหนึ่งไปยังอีกจุดหนึ่งได้
P2 ต่อเส้นตรงที่มีความยาวจำกัดออกไปเรื่อย ๆ
P3 เขียนวงกลมได้เมื่อกำหนดจุดศูนย์กลางและระยะทางใด ๆ
P4 มุมฉากทุกมุมย่อมเท่ากัน
P5 ถ้าเส้นตรงเส้นหนึ่ง ผ่านเส้นตรง 2 เส้น ทำให้มุมภายในที่อยู่ด้านเดียวกันรวมกันน้อยกว่า 2 มุมฉาก แล้วเส้นตรงสองเส้นจะตัดกันทางด้านที่มีมุมรวมกันน้อยกว่า 2 มุมฉาก ถ้าลากเส้นนั้นต่อไปเรื่อยๆ
จากข้อตกลงทั้ง 10 ประการนี้ ยุคลิดสามารถนำไปสร้างทฤษฎีบทได้ 465 ทฤษฎี โดยใช้วิธีการที่เรียกว่า “การสังเคราะห์” ด้วยการนำบทนิยามหรือทฤษฎีที่รู้แล้ว ประกอบกับการให้เหตุผลเชิงตรรกศาสตร์ ไปสร้างข้อสรุปหรือทฤษฎีบทใหม่ที่มีความซับซ้อนมากขึ้นม ต่อจากนั้นจึงได้ใช้วิธีการวิเคราะห์พิสูจน์ข้อสรุปหรือทฤษฎีบทเหล่านั้นว่าเป็นจริง
2. ยุคลิดให้นิยามคำศัพท์ทุกคำที่ต้องใช้ในหนังสือ Elements เช่น คำว่าจุด เส้น ระนาบ เป็นต้น
3. การพิสูจน์ที่ปรากฏในหนังสือ Elements ยุคลิดได้พยายามใช้หลักเกณฑ์อย่างเคร่งครัด นอกจากนี้การพิสูจน์ทฤษฎีบทบางบท จัดได้ว่าเป็นวิธีการให้เหตุผลเชิงคณิตศาสตร์ที่สละสลวยและสวยงาม จนถือเป็นแบบฉบับมาจนทุกวันนี้ เช่น การพิสูจน์ว่า จำนวนเฉพาะมีจำนวนไม่จำกัด เป็นต้น[3]
หนังสือ Elements มีทั้งหมด 13 เล่ม ซึ่งมีเนื้อหาส่วนใหญ่เกี่ยวกับเรขาคณิต แต่ก็มีการกล่าวถึงพีชคณิต เรขาคณิตเชิงพีชคณิตเบื้องตน และทฤษฎีจำนวนเบื้องต้น เนื้อหาส่วนใหญ่เป็นผลงานของคนอื่น แต่ทว่ายุคลิดได้นำผลงานของนักปราชญ์คนอื่น ๆ ในสมัยก่อน ๆ มารวบรวมเข้าด้วยกันอย่างมีระบบ และเป็นลำดับเหตุผลต่อเนื่องกัน ซึ่งเนื้อหาของทั้ง 13 เล่ม มีรายละเอียดโดยสังเขปดังนี้
เล่ม 1 ประกอบไปด้วยบทนิยาม 13 นิยาม สัจพจน์ 10 ข้อ ยุคลิดเรียกสัจพจน์ 5 ข้อแรกว่า Postulates และ 5 ข้อหลังเรียกว่า Common notion และทฤษฎีบทอีก 48 ทฤษฎีบท ซึ่งรวมถึงทฤษฎีปีทาโกรัสและบทกลับเอาไว้ด้วย
เล่ม 2 เกี่ยวกับการเปลี่ยนรูป พื้นที่ของรูปต่าง ๆ และพีชคณิตเชิงเรขาคณิตของปีทาโกรัส
เล่ม 3 เป็นทฤษฎีบทเกี่ยวกับวงกลม คอร์ด เส้นสัมผัสวงกลมและการวัดมุมต่าง ๆ
เล่ม 4 เป็นการอภิปรายผลงานของโรงเรียนปีทาโกเรียน เรื่อง การสรางรูปหลายเหลี่ยมด้านเท่าโดยใช้วงเวียนและสันตรง
เล่ม 5 ยุคลิดนำแนวคิดของยูโดซุสมาอธิบายเรื่องทฤษฎีสัดส่วนได้อย่างดีเยี่ยม และนำการประยุกต์ในการหาขนาด ซึ่งแก้ปัญหาที่เกิดขึ้นจากการค้นพบจำนวนอตรรกยะ
เล่ม 6 นำทฤษฎีสัดส่วนของยูโดซุสมาใช้กับเรขาคณิตในระนาบเกี่ยวกับทฤษฎีบทของรูปสามเหลี่ยมคล้าย
เล่ม 7 ทฤษฎีจำนวน: การจำแนกจำนวนเป็นจำนวนคู่ จำนวนคี่ จำนวนเฉพาะ และจำนวนนสมบูรณ์ (Perfect Number) ตัวหารร่วมมาและตัวคูณร่วมน้อย
เล่ม 8 สัดส่วนต่อเนื่อง
เล่ม 9 เกี่ยวกับทฤษฎีจำนวนต่อจากเล่ม 7 และ 8 ทฤษฎีที่มีชื่อเสียงของเล่มนี้คือ จำนวนเฉพาะมีจำนวนไม่จำกัด
เล่ม 10 เกี่ยวกับเรขาคณิตที่เกี่ยวกับจำนวนอตรรกยะ
เล่ม 11 ความรู้เกี่ยวกับเรขาคณิตสามมิติที่สมนัยกับเล่ม 1
เล่ม 12 เรื่องปริมาตรและทฤษฎีบทของยูโดซุสเกี่ยวกับระเบียบวิธีเกษียณ (Method of exhaustion) ซึ่งเป็นพื้นฐานนำไปสู่เรื่องลิมิต (Limit)
เล่ม 13 เกี่ยวกับการสร้างรูปทรฝฝ
แม้ว่ายุคลิดจะไม่ได้เป็นนักคณิตศาสตร์ที่สร้างสรรค์งานทางคณิตศาสตร์ขึ้นใหม่ แต่งานที่เขารวบรวมขึ้นอย่างเป็นระบบ กลับกลายเป็นผลงานที่มีผลกระทบต่อมนุษยชาติมามากกว่า 2000 ปี โดยเฉพาะทางด้านเรขาคณิต จึงไม่น่าแปลกถ้าหากเราไปอ่านหนังสือบางเล่ม จะกล่าวยกย่องว่ายุคลิด คือ บิดาแห่งวิชาเรขาคณิต
เรื่องเล่าเกี่ยวกับยุคลิด
ปัปปุส (Pappus, ประมาณ ค.ศ. 300) นักคณิตศาสตร์ที่มีชื่อเสียงอีกท่านหนึ่งเคยยกย่องยุคลิดไว้ว่า “เมื่อเปรียบเทียบกับอะโปลโลเนียส (Apollonius of Perga, ประมาณ 225 ปีก่อนคริสต์ศักราช) แล้ว ยุคลิดช่างเป็นคนที่ถ่อมตนและนึกถึงคนอื่น ๆ อยู่เสมอ”
โปรคลุส (Proclus, ค.ศ. 410 – 485) ได้เล่าเรื่องราวเกี่ยวกับยุคลิดในหนังสือ Eudemian Summary ว่า “เมื่อยุคลิดได้เป็นพระอาจารย์วิชาเรขาคณิตในพระเจ้าทอเลมีที่ 1 พระองค์มีรับสั่งถามยุคลิดว่า ‘มีทางลัดสำหรับการเรียนวิชาเรขาคณิตไหม?’ ยุคลิดทูลตอบว่า ‘ไม่มีลาดพระบาทสำหรับการเรียนเรขาคณิต’ (There is no royal road to geometry.)” กล่าวคือ การศึกษาวิชาเรขาคณิตไม่ใช่สิ่งที่สะดวกสบายและทำได้ง่าย ๆ แต่มีบางคนกล่าวว่าคำพูดนี้เป็นคำพูดของเมแนชมุส (Menaechmus, ประมาณ 350 ปีก่อนคริสต์ศักราช) เมื่อทูลตอบพระเจ้าอะเล็กซานเดอร์มหาราช
เมื่อมีลูกศิษย์คนหนึ่งถามยุคลิดในระหว่างที่เรียนเรขาคณิตว่า “เราจะได้อะไรเป็นผลตอบแทนบ้างจากการเรียนสิ่งที่ยากเหล่านี้” (What will I get by learning difficult thing?) ซึ่งคำถามนี้คงจะหมายความว่าจะนำความรู้ทางเรขาคณิตไปใช้ประโยชน์อะไรได้บ้าง เพราะเรขาคณิตที่ยุคลิดสอนนั้นมีแต่การพิสูจน์และการให้เหตุผล ซึ่งเป็นการยากที่ยุคลิดจะตอบได้ในทันทีทันใด ท่านจึงสั่งให้ทาสไปหยิบเหรียญเงิน 2 โอปอลมา 1 เหรียญมอบให้แก่ลูกศิษย์คนนั้นและตอบว่า “เจ้าจะต้องได้รับกำไรหรือประโยชน์จากสิ่งที่เรียนรู้แน่นอน” (for he must make a profit from what he learns.) ที่ยุคลิดกล่าวเช่นนั้นเพื่อแสดงให้เห็นว่าในการเรียนวิชาคณิตศาสตร์ไม่มีทางลัด และไม่สามารถเรียนหรือฝึกหัดแทนกันได้ ผู้เรียนจะต้องพอใจและรักในวิชาคณิตศาสตร์เพราะตัววิชาคณิตศาสตร์เอง
จากเรื่องที่เล่ามานี้แสดงให้เห็นว่า ยุคลิดเป็นผู้ที่มีความรอบรู้และมีความอดทน และเป็นครูที่ดี เป็นนักอนุรักษ์ เป็นผู้ที่อุทิศเวลาให้กับการศึกษาคณิตศาสตร์ และเป็นผู้ที่มีความลึกซึ้งในวิชาคณิตศาสตร์มาก
ผลงานของยุคลิดนอกจาก Elements
ผลงานที่สำคัญของยุคลิดคือการเขียนตำราทางคณิตศาสตร์และดารศาสตร์ ผลงานบางชิ้นสูญหายไปแล้ว เช่น งานเขียนเกี่ยวกับภาคตัดกรวยที่ยุคลิดรวบรวมจากการค้นคว้าของอริสเตอุส (Aristaeus, ประมาณ 320 ปีก่อนคริสต์ศักราช) ซึ่งเป็นนักเรขาคณิตยุคเดียวกับยุคลิด และงานเขียนเกี่ยวกับภาคตัดกรวยเช่นกันแต่เป็นผลงานของเมแนชมุส
ยุคลิดมีผลงานอย่างน้อยที่สุด 9 ชิ้น ได้แก่ Elements, Data, On Divisions (หรือ ), Pseudaria, Porissms, Conics, Phacnomena, Optics, Elements of Music แต่มีผลงานที่ ยังคงเหลืออยู่ในปัจจุบัน 5 ชิ้นด้วยกัน คือ
1. Division of Figures กล่าวถึงการแบ่งรูปในระนาบ ประกอบด้วยทฤษฎีบท 36 บท เช่น ทฤษฎีบทที่ 1 ว่าด้วยการสร้างเส้นตรงให้ขนานกับฐานของสามเหลี่ยมและแบ่งสามเหลี่ยมออกเป็นสองส่วนโดยมีพื้นที่เท่ากัน เป็นต้น
2. Data เปรียบเทียบได้กับคู่มือการสอนที่ใช้ควบคู่กับหนังสือ Elements 6 เล่มแรก เนื้อหาสาระจึงเน้นที่การชี้แนะวิธีวิเคราะห์ปัญหาทางเรขาคณิต
3. Phacnomena กล่าวถึงเรขาคณิตบนทรงกลม
4. Optics กล่าวถึงการศึกษาเกี่ยวกับปรากฏการณ์ของแสง
5. Elements
เป็นที่น่าเสียดายเหลือเกินที่เรารู้เรื่องราวต่าง ๆ ที่เกี่ยวข้องกับชีวิตและบุคลิกภาพของยูคลิดน้อยมาก รู้แค่เพียงว่าท่านเคยเป็นศาสตราจารย์ด้านคณิตศาสตร์ (professor of mathematics) ของมหาวิทยาลัยอะเล็กซานเดรีย (University of Alexandria) ต่อจาก พลาโต (Plato) และก่อนหน้า อาร์คีมีดีส (Archimedes) และได้ใช้ชีวิตอยู่ที่อะเล็กซานเดรียเป็นเวลานานรวมถึงเป็นผู้ก่อตั้งสำนักคณิตศาสตร์แห่งอะเล็กซานเดรีย (Alexandria School of Mathematics) ขึ้นด้วย ซึ่งสำนักแห่งนี้ก็มีชื่อเสียงต่อมาอีกเป็นเวลานาน
SR - Sponsored Review : กระทู้รีวิวนี้เป็นกระทู้ SR โดยที่เจ้าของกระทู้