พอดีแปลแล้วแต่ไม่ค่อยเข้าใจค่ะ กลัวจะเรียบเรียงผิดแล้วเข้าใจเนื้อหาผิดไปติดคัพท์เฉพาะไว้ให้ก็ได้ค่ะ แค่อยากเข้าใจเฉยๆ จะเอาไปใช้เขียนงานอีกทีค่ะ ขอบพระคุณมากค่ะ
The evolution of phototrophic eukaryotes was enabled by endosymbioses between a eukaryotic host and a prokaryotic or eukaryotic endosymbiont.While the prokaryote-to-eukaryote endosymbiotic events involving a cyanobacterial symbiont are believed to have happened twice during evolution, complex eukaryote-to-eukaryote endosymbioses are much more frequent. Since the main benefit of photoautotrophy is not essential for the survival of cells that have kept their ancestral mechanisms of heterotrophy (osmotrophy or phagotrophy), frequent losses of photosynthesis are found throughout the diversity of eukaryotic phototrophs. At the same time, a loss of the organelle is quite rare due to its acquired indispensability, as there were gradual losses and a redistribution of redundant pathways between the symbiont and the host. Many former phototrophs reverted to heterotrophy, obtaining organic carbon through osmotrophy, phagotrophy, and even parasitism. Apicomplexans are some of the most well-known parasites that have evolved from a photosynthetic alga. Contrary to the assumption that parasitism evolved from a mutual relationship, I suggest that a much more likely scenario involves a switch from mixotrophy (in the form of a combination of parasitic and phototrophic lifestyles) in the ancestral apicomplexan to obligatory parasitism. This scenario likely began in a transparent host (like it is now for C. velia and coral larvae), with the parasite losing its ability to photosynthesize when it invaded an opaque host, or as a consequence of scavenging all of its required organic carbon from the host.
ช่วยแปลเป็นไทยแบบพอเข้าใจให้ได้มั้ยคะ??
The evolution of phototrophic eukaryotes was enabled by endosymbioses between a eukaryotic host and a prokaryotic or eukaryotic endosymbiont.While the prokaryote-to-eukaryote endosymbiotic events involving a cyanobacterial symbiont are believed to have happened twice during evolution, complex eukaryote-to-eukaryote endosymbioses are much more frequent. Since the main benefit of photoautotrophy is not essential for the survival of cells that have kept their ancestral mechanisms of heterotrophy (osmotrophy or phagotrophy), frequent losses of photosynthesis are found throughout the diversity of eukaryotic phototrophs. At the same time, a loss of the organelle is quite rare due to its acquired indispensability, as there were gradual losses and a redistribution of redundant pathways between the symbiont and the host. Many former phototrophs reverted to heterotrophy, obtaining organic carbon through osmotrophy, phagotrophy, and even parasitism. Apicomplexans are some of the most well-known parasites that have evolved from a photosynthetic alga. Contrary to the assumption that parasitism evolved from a mutual relationship, I suggest that a much more likely scenario involves a switch from mixotrophy (in the form of a combination of parasitic and phototrophic lifestyles) in the ancestral apicomplexan to obligatory parasitism. This scenario likely began in a transparent host (like it is now for C. velia and coral larvae), with the parasite losing its ability to photosynthesize when it invaded an opaque host, or as a consequence of scavenging all of its required organic carbon from the host.